Session 5 - Curriculum Structure Models

Three teams were asked to create curriculum models - one based on the Organizing Principles, another built on the existing structure, and a third unconstrained.

Year 1	Year 2	Year 3	Year 4
Molecular		Engineering	
Transformations		PChem	
	Empirical		
	Kinetics	[Molecular Theory	
		Fundamental Kinetics	
		Molecular Transport	
		Mol. Sept. Principles]	(tech electives)
Multiscale (continuum)	Colloidal & Interfacial	Separations	
	"Existing" (classical)	Existing Transport	
🗲 Dim. Analysis	Thermodynamics	(Momentum/Energy/Mass,	
← Intro to Separation		etc.)	
			Cumulative Model- building & Solution
Systems		Heat Exchangers & Flow Equipment	
\leftarrow Intro to Problem ID	Mass Balances/	Reactor	"Existing" Dynamics
and Solving (& \$) [i.e.	Problem Solving	Dynamics	& Control
Analysis & Design]		Reacting Systems	
\leftarrow Intro to Control			
\rightarrow Integrative I	Integrative II	Integrative III	Integrative IV
	- case study theme		- Cumulative Design
Foundation			
Real and Virtual Lab Experiences Communications & Other Professional Skills			Cumulative Lab Experience/ Project

Group B - Curriculum Model based on Current Practice

- What do you mean by "radical curriculum change"?
- We already have changed the curriculum since ~ 1960
- We cover systems, multiscale (though not explicitly)
- Improve depth in molecular transformations
- What new fundamentals./knowledge for Bio
 - o Electrochemical transport
 - Aqueous-phase reactions
 - o Membranes
- Inclusion of Bio is not driving force (?)
- Can we use existing core to get philosophy across?
- What in or out?
- Hypothesis we can do this (good place to start!)
- 1. Material & Energy Balances is renamed "Intro to Chem & Bio Systems"
 - a. Dynamic system "draining tank"
 - b. Molecular/chemical properties and reactions
 - c. Multiscale (?)
 - d. Need <u>bio</u> examples (+)
 - e. New visual/ graphical solution methods
- 2. CheE Thermo
 - a. Physical Chemical (Biochem) Equilibrium
 - b. QSPR (+)
 - c. Electrolytes (+)
- 3. Heat and Mass Transfer
 - a. Brownian motion (motivate mass/ heat transfer coef) (+)
 - b. Molecular origin of phenomena. (+)
 - c. More room for mass transfer. (+)
 - d. Heat transfer emphasis decreased (\downarrow)
 - e. Radiation (?) (-)
- 4. Reaction Engineering
 - a. Provide info about molecules in reaction
 - b. Bio example of kinetics (+)
 - c. Reaction in aqueous systems, ref state (+)
 - d. Coupled reactions
 - e. Case study simulation/video (need tool)
 - f. ex. EO prod (cat surface \rightarrow CFD \rightarrow plant) \rightarrow multiscales
- 5. Other
 - a. need mass transfer emphasized (teach by "rows")
 - b. separations include mass transfer and bio
 - c. use partial semester courses
 - d. distribute process control in other courses

Group C - Freestyle Curriculum Model

Eng Sc Block Thermo, Mol Trans, Trans Kin/React

2 streams in parallel small projects integrate where possible papers/reports teams

Pedagogical Principles -- Soft Skills

- 1. Teach in context by doing
- 2. Bring in many places, repeatedly in Curriculum
- 3. Active learning
 - a. Involvement
 - b. Projects, reports in teams
- 4. Wherever possible
 - a. Open-ended problems
 - b. Judgment of what is important
 - c. Handling missing data
- Year 2 Thermo, Kinetics

Conduction/Diffusion/Reaction Engineering + Fluids

Year 3 – Reaction Engineering

Convective Heat and Mass Transfer + Separations

- Timing Issues: Supporting Science and Math
- Motivation need structure to promote
 - o Integration of content
 - o Soft skills in context

Curriculum Structures (web.mit.edu/che-curriculum)

Atlanta Workshop

Frontiers in Chemical Engineering Education

Proceedings - Session 5

Discussion following the Presentations

- Like the idea of the year-end multi-year project in the Freestyle structure
- Could have varying levels of credit hours for different years (for example, seniors would receive more credit; they could "outsource" work to sophomores)
- Group A had to force themselves away from Group B
- Practical considerations of schedule could not be sufficiently addressed, and they are significant
- If we change the curriculum, let's really do it thoroughly everything what we want to achieve in a curriculum.
- Group A is the basis for jumping off further curriculum development.